Metodi Quantitativi per l’Informatica a.a. 2016

An Introduction to Machine Learning

Below, you can find the original timetable of the course “Metodi Quantitativi per l’Informatica” (Introduction to Machine Learning) which was held in 2016. In the table, you can also find the slides (in English) which I personally prepared for the course (starting from the material presented in the book of Kevin Murphy).

    

 L#  Date   Topic     References  Slides
 L1 4/10/2016  Introduction – Part 1 Kevin Murphy’s Book  lec1-part1
 L2 6/10/2016  Introduction – Part 2 Kevin Murphy’s Book  lec1-part2
 Es1 6/10/2016  MATLAB – Introduction Part 1 Getting startedMatrix operations  
 L3 11/10/2016  Basic Concepts Kevin Murphy’s Book  lec2
 L4 13/10/2016  Probability – Part 1 Kevin Murphy’s Book  lec3-part1
 Es2 13/10/2016  MATLAB Intro Part 2, Intro GIT, k-nearest neighbor Functions, Simple Git guidepmtk3 K-NN  
 L5 18/10/2016  Probability – Part 2 Kevin Murphy’s Book  lec3-part2
 L6 20/10/2016  Probability – Part 3 Kevin Murphy’s Book  lec3-part3
 Es3 20/10/2016  Exercises on KNN: use and comparison of train/validation set, CV, invariance to the permutations of the features Kevin Murphy’s Book  
 L7 25/10/2016  Generative Models for Discrete Data – Part 1 Kevin Murphy’s Book  lec4-part1
 L8 27/10/2016  Generative Models for Discrete Data – Part 2 (1/2) Kevin Murphy’s Book  lec4-part2
 Es4 27/10/2016  MATLAB exercises on Linear, Polynomial, and Logistic Regression Kevin Murphy’s Book  
 L9 03/11/2016  Generative Models for Discrete Data – Part 2 (2/2)  Kevin Murphy’s Book  lec4-part2
 Es5 03/11/2016  Exercise on Dirichlet-Multinomial Posterior Predictive, review of KNN exercise using FLANN  Kevin Murphy’s Book, FLANN  
 L10 08/11/2016  Generative Models for Discrete Data – Part 3 (1/3)  Kevin Murphy’s Book  lec4-part3
 L11 10/11/2016  Generative Models for Discrete Data – Part 3 (2/3)  Kevin Murphy’s Book  lec4-part3
 Es6 10/11/2016  Naive Bayes classifier applied to text data (bag of words): Train, visualize class conditional densities and top N words (for both datasets)  Kevin Murphy’s Book  
 L12 15/11/2016  Generative Models for Discrete Data – Part 3 (3/3)  Kevin Murphy’s Book  lec4-part3
 L13 17/11/2016  Gaussian Models – Part 1  Kevin Murphy’s Book  lec5-part1
 Es7 17/11/2016  Feature selection using mutual information. Bag of words exercises with feature selection.  Kevin Murphy’s Book  
 L14 22/11/2016  Gaussian Models – Part 2 (1/2)  Kevin Murphy’s Book  lec5-part2
 L15 24/11/2016  Gaussian Models – Part 2 (2/2)  Kevin Murphy’s Book  lec5-part2
 Es8 24/11/2016  Exercise on Naive Bayes Posterior Predictive  Kevin Murphy’s Book  
 L16 28/11/2016  Linear Regression – Part 1  Kevin Murphy’s Book  lec6
 L17 1/12/2016  Linear Regression – Part 2  Kevin Murphy’s Book  lec6
 Es9 1/12/2016  Gaussian Ellipses and Ellipsoids  Kevin Murphy’s Book  
 L18 6/12/2016  Logistic Regression  Kevin Murphy’s Book  lec7
 L19 13/12/2016  Principal Component Analysis  Kevin Murphy’s Book  lec8
 L20 15/12/2016  Kernel Methods  Kevin Murphy’s Book  lec9
 Es10 15/12/2016  Support Vector Machine (SVM): A Practical Guide A Practical Guide to Support Vector Classification    
 L21 20/12/2016  Gaussian Processes
 Kevin Murphy’s Book
 lec10