Lecture 7

Logistic Regression

Luigi Freda

ALCOR Lab DIAG University of Rome "La Sapienza"

December 11, 2016

- Intro
 - Logistic Regression
 - Decision Boundary
- Maximum Likelihood Estimation
 - Negative Log-Likelihood
- Optimization Algorithms
 - Gradient Descent
 - Newton's Method
 - Iteratively Reweighted Least Squares (IRLS)
- 4 Regularized Logistic Regression
 - Concept

- Intro
 - Logistic Regression
 - Decision Boundary
- Maximum Likelihood Estimation
 - Negative Log-Likelihood
- Optimization Algorithms
 - Gradient Descent
 - Newton's Method
 - Iteratively Reweighted Least Squares (IRLS)
- 4 Regularized Logistic Regression
 - Concept

Linear Regression

linear regression

• $y \in \mathbb{R}$, $\mathbf{x} \in \mathbb{R}^D$ and $\mathbf{w} \in \mathbb{R}^D$ and $\epsilon \sim \mathcal{N}(0, \sigma^2)$

$$y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + \epsilon = \sum_{j=1}^{D} w_j x_j + \epsilon$$

$$p(y|\mathbf{x},\theta) = \mathcal{N}(\mathbf{w}^T\mathbf{x},\sigma^2)$$

polynomial regression

ullet we replace ${f x}$ by a non-linear function $\phi({f x}) \in \mathbb{R}^{d+1}$

$$y(x) = \mathbf{w}^T \phi(\mathbf{x}) + \epsilon$$

$$p(y|\mathbf{x},\theta) = \mathcal{N}(\mathbf{w}^T \phi(\mathbf{x}), \sigma^2)$$

- $\mu(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x})$ (basis function expansion)
- $\phi(\mathbf{x}) = [1, x, x^2, ..., x^d]$ is the vector of **polynomial basis functions**

N.B.: in both cases $\theta = (\mathbf{w}, \sigma^2)$ are the **model parameters**

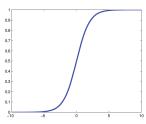
From Linear to Logistic Regression

?can we generalize linear regression $(y \in \mathbb{R})$ to binary classification $(y \in \{0,1\})$? we can follow two steps:

- replace $y \sim \mathcal{N}(\mu(\mathbf{x}), \sigma^2(x))$ with $y \sim \mathrm{Ber}(y|\mu(\mathbf{x}))$ (we want $y \in \{0, 1\}$)
- ② replace $\mu(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$ with $\mu(\mathbf{x}) = \operatorname{sigm}(\mathbf{w}^T \mathbf{x})$ (we want $0 \le \mu(\mathbf{x}) \le 1$)

where

- Ber $(y|\mu(x)) = \mu(x)^{\mathbb{I}(y=1)}(1-\mu(x))^{\mathbb{I}(y=0)}$ is the Bernoulli distribution
- $\mathbb{I}(e) = 1$ if e is true, $\mathbb{I}(e) = 0$ otherwise (indicator function)
- $\operatorname{sigm}(\eta) = \frac{\exp(\eta)}{1 + \exp(\eta)} = \frac{1}{1 + \exp(-\eta)}$ is the sigmoid function (aka logistic function)



From Linear to Logistic Regression

following the two steps:

• replace
$$y \sim \mathcal{N}(\mu(\mathbf{x}), \sigma^2(x))$$
 with $y \sim \text{Ber}(y|\mu(\mathbf{x}))$ (we want $y \in \{0, 1\}$)

② replace
$$\mu(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$$
 with $\mu(\mathbf{x}) = \operatorname{sigm}(\mathbf{w}^T \mathbf{x})$ (we want $0 \le \mu(\mathbf{x}) \le 1$)

we start from a linear regression

$$p(y|\mathbf{x}, \theta) = \mathcal{N}(\mathbf{w}^T \mathbf{x}, \sigma^2)$$
 where $y \in \mathbb{R}$

to obtain a logistic regression

$$p(y|\mathbf{x}, \mathbf{w}) = \text{Ber}(y|\text{sigm}(\mathbf{w}^T\mathbf{x}))$$
 where $y \in \{0, 1\}$

- Intro
 - Logistic Regression
 - Decision Boundary
- Maximum Likelihood Estimation
 - Negative Log-Likelihood
- Optimization Algorithms
 - Gradient Descent
 - Newton's Method
 - Iteratively Reweighted Least Squares (IRLS)
- 4 Regularized Logistic Regression
 - Concept

Linear Decision Boundary

$$p(y|\mathbf{x}, \mathbf{w}) = \text{Ber}(y|\text{sigm}(\mathbf{w}^T\mathbf{x}))$$
 where $y \in \{0, 1\}$

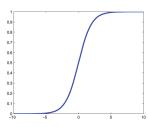
•
$$p(y = 1|\mathbf{x}, \mathbf{w}) = \operatorname{sigm}(\mathbf{w}^T \mathbf{x}) = \frac{\exp(\mathbf{w}^T \mathbf{x})}{1 + \exp(\mathbf{w}^T \mathbf{x})} = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x})}$$

•
$$p(y = 0 | \mathbf{x}, \mathbf{w}) = 1 - p(y = 1 | \mathbf{x}, \mathbf{w}) = 1 - \operatorname{sigm}(\mathbf{w}^T \mathbf{x}) = \operatorname{sigm}(-\mathbf{w}^T \mathbf{x})$$

•
$$p(y = 1|\mathbf{x}, \mathbf{w}) = p(y = 0|\mathbf{x}, \mathbf{w}) = 0.5$$
 entails

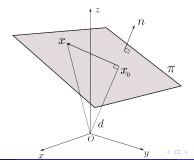
$$\operatorname{sigm}(\mathbf{w}^T\mathbf{x}) = 0.5 \implies \mathbf{w}^T\mathbf{x} = 0$$

• hence we have a linear decision boundary $\mathbf{w}^T \mathbf{x} = 0$



Linear Decision Boundary

- linear decision boundary $\mathbf{w}^T \mathbf{x} = 0$ (hyperplane passing through the origin)
- indeed, as in the linear regression case $\mathbf{w}^T \mathbf{x} = [w_0, \tilde{\mathbf{w}}^T \tilde{\mathbf{x}}]^T$ where $\mathbf{x} = [1, \tilde{\mathbf{x}}]^T$ and $\tilde{\mathbf{x}}_i$ are the actual data samples
- as a matter of fact, our linear decision boundary has the form $\mathbf{w}^T \tilde{\mathbf{x}} + w_0 = 0$
- hyperplane $\mathbf{a}^T \mathbf{x} + b = 0$ equivalent to $\mathbf{n}^T \mathbf{x} d = 0$ where \mathbf{n} is the normal unit vector (i.e. $\|\mathbf{n}\| = 1$) and $d \in \mathbb{R}$ is the distance origin-hyperplane
- one can define $\mathbf{x}_0 \triangleq \mathbf{n}d$ and rewrite the plane equation as $\mathbf{n}^T(\mathbf{x} \mathbf{x}_0) = 0$



Non-Linear Decision Boundary

ullet we can replace ${f x}$ by a non-linear function $\phi({f x})$ and obtain a

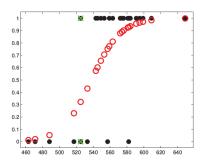
$$p(y|\mathbf{x}, \mathbf{w}) = Ber(y|sigm(\mathbf{w}^T \phi(\mathbf{x})))$$

- if $x \in \mathbb{R}$ we can use $\phi(x) = [1, x, x^2, ..., x^d]$ which is the vector of **polynomial** basis functions
- in general if $\mathbf{x} \in \mathbb{R}^D$ we can use a multivariate polynomial expansion $\mathbf{w}^T \phi(\mathbf{x}) = \sum_{i=1}^{N} w_{i_1 i_2 \dots i_D} \prod_{i=1}^D x_i^{i_j}$ up to a certain degree d
- $p(y = 1|\mathbf{x}, \mathbf{w}) = \operatorname{sigm}(\mathbf{w}^T \phi(\mathbf{x}))$
- $p(y = 0 | \mathbf{x}, \mathbf{w}) = \operatorname{sigm}(-\mathbf{w}^T \phi(\mathbf{x}))$
- $p(y = 1|\mathbf{x}, \mathbf{w}) = p(y = 0|\mathbf{x}, \mathbf{w}) = 0.5$ entails

$$\operatorname{sigm}(\mathbf{w}^T \phi(\mathbf{x})) = 0.5 \implies \mathbf{w}^T \phi(\mathbf{x}) = 0$$

ullet hence we have a non-linear decision boundary ${f w}^{{\sf T}}\phi({f x})=0$

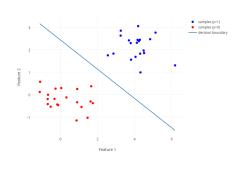
A 1D Example

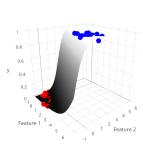


- solid black dots are data (x_i, y_i)
- open red circles are **predicted probabilities**: $p(y = 1|x, \mathbf{w}) = \text{sigm}(w_0 + w_1x)$
- in this case data is **not** linearly separable
- the linear decision boundary is $w_0 + w_1 x = 0$ which entails $x = -w_0/w_1$

in general, when data is not linearly separable, we can try to use the basis function expansion as a further step $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$

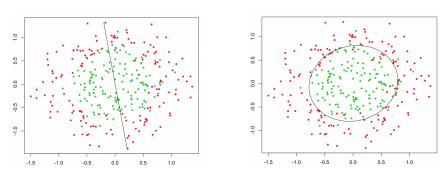
A 2D Example





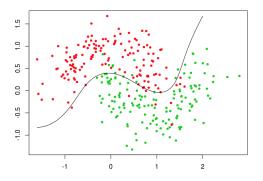
- *left*: a linear decision boundary on the "feature plane" (x_1, x_2)
- right: a 3D plot of $p(y = 1 | \mathbf{x}, \mathbf{w}) = \text{sigm}(w_0 + w_1 x_2 + w_2 x_2)$

Examples



- left: non-linearly separable data with a linear decision boundary
- right: the same dataset fit with a quadratic model (and quadratic decision boundary)

Examples



another example of non-linearly separable data which is fit by using a polynomial model

- Intro
 - Logistic Regression
 - Decision Boundary
- Maximum Likelihood Estimation
 - Negative Log-Likelihood
- Optimization Algorithms
 - Gradient Descent
 - Newton's Method
 - Iteratively Reweighted Least Squares (IRLS)
- 4 Regularized Logistic Regression
 - Concept

Gradient and Hessian

• the likelihood for the logistic regression is given by

$$\rho(\mathcal{D}|\boldsymbol{\theta}) = \prod_{i} \rho(y_i|\mathbf{x}_i,\boldsymbol{\theta}) = \prod_{i} \mathrm{Ber}(y_i|\mu_i) = \prod_{i} \mu_i^{\mathbb{I}(y_i=1)} (1-\mu_i)^{\mathbb{I}(y_i=0)}$$

where $\mu_i \triangleq \operatorname{sigm}(\mathbf{w}^T \mathbf{x}_i)$

• the Negative Log-Likelihood (NLL) is given by

$$egin{align} extit{NLL} &= -\log
ho(\mathcal{D}|oldsymbol{ heta}) = \sum_i \left[\mathbb{I}(y_i = 1)\log \mu_i + \mathbb{I}(y_i = 0)\log (1 - \mu_i)
ight] = \ &= \sum_i \left[y_i \log \mu_i + (1 - y_i)\log (1 - \mu_i)
ight] \end{aligned}$$

Negative Log-Likelihood

Gradient and Hessian

we have

$$\mathit{NLL} = \sum_i \left[y_i \log \mu_i + (1-y_i) \log (1-\mu_i)
ight]$$

where $\mu_i \triangleq \operatorname{sigm}(\mathbf{w}^T \mathbf{x}_i)$

- ullet in order to find the MLE we have to minimize the NLL and impose $rac{\partial NLL}{\partial w_i}=0$
- given $\sigma(a) \triangleq \text{sigm}(a) = \frac{1}{1+e^{-a}}$ it is possible to show (homework ex 8.3) that

$$\frac{d\sigma(a)}{da} = \sigma(a)(1 - \sigma(a))$$

 using the previous equation and the chain rule for calculus we can compute the gradient g

$$\mathbf{g} \triangleq \frac{d}{d\mathbf{w}} NLL(\mathbf{w}) = \sum_{i} \frac{\partial NLL}{\partial \mu_{i}} \frac{d\mu_{i}}{da_{i}} \frac{da_{i}}{d\mathbf{w}} = \sum_{i} (\mu_{i} - y_{i}) \mathbf{x}_{i}$$

where $\mu_i = \sigma(a_i)$ and $a_i \triangleq \mathbf{w}^T \mathbf{x}_i$

Negative Log-Likelihood

Gradient and Hessian

• the gradient can be rewritten as

$$\mathbf{g} = \sum_{i} (\mu_i - y_i) \mathbf{x}_i = \mathbf{X}^T (\boldsymbol{\mu} - \mathbf{y})$$

where **X** is the design matrix, $\boldsymbol{\mu} \triangleq [\mu_1,...,\mu_N]^T$, $\mathbf{y} \triangleq [y_1,...,y_N]^T$ and $\mu_i \triangleq \operatorname{sigm}(\mathbf{w}^T\mathbf{x}_i)$

the Hessian is

$$\mathbf{H} \triangleq \frac{d}{d\mathbf{w}} g(\mathbf{w})^{T} = \sum_{i} \left(\frac{d\mu_{i}}{da_{i}} \frac{da_{i}}{d\mathbf{w}} \right) \mathbf{x}_{i}^{T} = \sum_{i} \mu_{i} (1 - \mu_{i}) \mathbf{x}_{i} \mathbf{x}_{i}^{T} = \mathbf{X}^{T} \mathbf{S} \mathbf{X}$$

where $S \triangleq \text{diag}(\mu_i(1-\mu_i))$

- it is easy to see that H > 0 $(\mathbf{v}^T H \mathbf{v} = (\mathbf{v}^T \mathbf{X}^T) \mathbf{S}(\mathbf{X} \mathbf{v}) = \mathbf{z}^T \mathbf{S} \mathbf{z} > 0$)
- given that H > 0 we have that the NLL is convex and has a unique global minimum
- unlike linear regression, there is no closed form for the MLE (since the gradient contains non-linear functions)
- we need to use an **optimization algorithm** to compute the MLE

- Intro
 - Logistic Regression
 - Decision Boundary
- Maximum Likelihood Estimation
 - Negative Log-Likelihood
- Optimization Algorithms
 - Gradient Descent
 - Newton's Method
 - Iteratively Reweighted Least Squares (IRLS)
- 4 Regularized Logistic Regression
 - Concept

The Gradient

ullet given a continuously differentiable function $f(ullet) \in \mathbb{R}$ we can use **first order** Taylor's expansion an approximate

$$f(\boldsymbol{\theta}) \approx f(\boldsymbol{\theta}^*) + \mathbf{g}(\boldsymbol{\theta}^*)^T (\boldsymbol{\theta} - \boldsymbol{\theta}^*)$$

where the gradient ${\boldsymbol g}$ is defined as

$$\mathbf{g}(\boldsymbol{ heta}) \triangleq rac{\partial f}{\partial oldsymbol{ heta}} = egin{bmatrix} rac{\partial f}{\partial heta_1} \ dots \ rac{\partial f}{\partial heta_m} \end{bmatrix}$$

ullet hence, in a neighbourhood of $oldsymbol{ heta}^*$ one has

$$\Delta f \approx \mathbf{g}^T \Delta \boldsymbol{\theta}$$

• it is easy to see that with $\|\Delta \theta\| = \eta$

 $(\|\mathbf{v}\| \triangleq \sqrt{\mathbf{v}^T \mathbf{v}})$

- ① Δf is max when $\Delta heta = + \eta \frac{\mathsf{g}}{\|\mathsf{g}\|}$
 - ② Δf is min when $\Delta \theta = -\eta \frac{g}{\|g\|}$ (steepest descent)

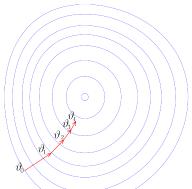
where $\hat{\mathbf{g}} \triangleq \frac{\mathbf{g}}{\|\mathbf{g}\|}$ is the unit vector in the gradient direction

 the simplest algorithm for unconstrained optimization is gradient descent (aka steepest descent)

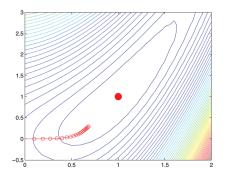
$$\theta_{k+1} = \theta_k - \eta \mathbf{g}_k$$

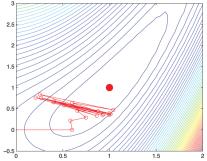
where $\eta \in \mathbb{R}^+$ is the step size (or learning rate) and $\mathbf{g}_k \triangleq \mathbf{g}(\boldsymbol{\theta}_k)$

• starting from an initial guess θ_0 , at each step k we move towards the negative gradient direction $-\mathbf{g}_k$



problem: how to choose the step size η ?





- left: using a fixed step size $\eta = 0.1$
- right: using a fixed step size $\eta = 0.6$
- if we use constant step size and we make it too small, convergence will be very slow, but if we make it too large, the method can fail to convergence at all

Line Search

- ullet convergence to the global optimum: the method is guaranteed to converge to the global optimum $heta^*$ no matter where we start
- global convergence: the method is guaranteed to converge to a local optimum no matter where we start
- let's develop a more stable method for picking eta so as to have global convergence
- consider a general update

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k + \eta \mathbf{d}_k$$

where $\eta > 0$ and \mathbf{d}_k are respectively our **step size** and selected **descent direction**

by Taylor's theorem, we have

$$f(\boldsymbol{\theta}_k + \eta \mathbf{d}_k) \approx f(\boldsymbol{\theta}_k) + \eta \mathbf{g}_k^T \mathbf{d}_k$$

- if η is chosen small enough and $\mathbf{d}_k = -\mathbf{g}_k$, then $f(\boldsymbol{\theta}_k + \eta \mathbf{d}_k) < f(\boldsymbol{\theta}_k)$ (since $\Delta f \approx -\eta \mathbf{g}^T \mathbf{g} < 0$)
- \bullet but we don't want to choose the step size η too small, or we will move very slowly and may not reach the minimum
- ullet line minimization of line search: pick η so as to minimize

$$\phi(\eta) \triangleq f(\theta_k + \eta \mathbf{d}_k)$$

Line Search

• in order to minimize

$$\phi(\eta) \triangleq f(\boldsymbol{\theta}_k + \eta \mathbf{d}_k)$$

we must impose

$$\frac{d\phi}{d\eta} = \frac{\partial f}{\partial \boldsymbol{\theta}}^{\mathsf{T}} \bigg|_{\boldsymbol{\theta}_k + \eta \mathbf{d}_k} \mathbf{d}_k = \mathbf{g} (\boldsymbol{\theta}_k + \eta \mathbf{d}_k)^{\mathsf{T}} \mathbf{d}_k = 0$$

• since in the gradient descent method we have $\mathbf{d}_k = \mathbf{g}_k$, the following condition must be satisfied

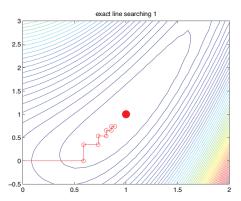
$$\mathbf{g}(\boldsymbol{\theta}_k + \eta \mathbf{d}_k)^T \mathbf{g}_k = 0$$

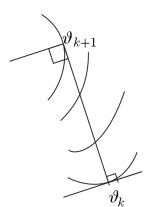
Line Search

• from the following condition

$$\mathbf{g}(\boldsymbol{\theta}_k + \eta \mathbf{d}_k)^T \mathbf{g}_k = 0$$

we have that consecutive descent directions are **orthogonal** and we have a **zig-zag** behaviour





- Intro
 - Logistic Regression
 - Decision Boundary
- Maximum Likelihood Estimation
 - Negative Log-Likelihood
- Optimization Algorithms
 - Gradient Descent
 - Newton's Method
 - Iteratively Reweighted Least Squares (IRLS)
- 4 Regularized Logistic Regression
 - Concept

The Hessian

• given a twice-continuously differentiable function $f(\theta) \in \mathbb{R}$ we can use a **second** order Taylor's expansion to approximate

$$f(oldsymbol{ heta}) pprox f(oldsymbol{ heta}^*) + \mathbf{g}(oldsymbol{ heta}^*)^T (oldsymbol{ heta} - oldsymbol{ heta}^*) + rac{1}{2} (oldsymbol{ heta} - oldsymbol{ heta}^*)^T \mathbf{H}(oldsymbol{ heta}^*) (oldsymbol{ heta} - oldsymbol{ heta}^*)$$

• the **Hessian matrix** $\mathbf{H} = \frac{\partial^2 f(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}^2}$ of a function $f(\boldsymbol{\theta}) \in \mathbb{R}$ is defined as follows (element-wise)

$$\mathbf{H}_{ij} = \frac{\partial^2 f(\boldsymbol{\theta})}{\partial \theta_i \partial \theta_j}$$

ullet hence if we consider an optimization algorithm, at step k we have

$$f(oldsymbol{ heta}) pprox f_{quad}(oldsymbol{ heta}) riangleq \mathbf{f}(oldsymbol{ heta}_k) + \mathbf{g}_k^{ op}(oldsymbol{ heta} - oldsymbol{ heta}_k) + rac{1}{2}(oldsymbol{ heta} - oldsymbol{ heta}_k)^{ op} \mathbf{H}_k(oldsymbol{ heta} - oldsymbol{ heta}_k)$$

ullet in order to find $heta_{k+1}$ we can then minimize $f_{quad}(oldsymbol{ heta})$

$$f_{quad}(\boldsymbol{\theta}) = \boldsymbol{\theta}^{\mathsf{T}} \mathbf{A} \boldsymbol{\theta} + \mathbf{b}^{\mathsf{T}} \boldsymbol{\theta} + c$$

where

$$\mathbf{A} = \frac{1}{2}\mathbf{H}_k, \quad \mathbf{b} = \mathbf{g}_k - \mathbf{H}_k \boldsymbol{\theta}_k, \quad c = f_k - \mathbf{g}_k^T \boldsymbol{\theta}_k + \frac{1}{2}\boldsymbol{\theta}_k^T \mathbf{H}_k \boldsymbol{\theta}_k$$

we can then impose

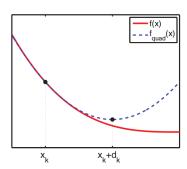
$$\frac{\partial f_{quad}}{\partial \boldsymbol{\theta}} = 0 \implies 2\mathbf{A}\boldsymbol{\theta} + \mathbf{b} = 0 \implies \mathbf{H}_k \boldsymbol{\theta} + \mathbf{g}_k - \mathbf{H}_k \boldsymbol{\theta}_k = 0$$

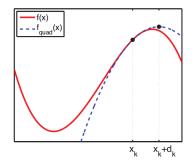
• the minimum of f_{quad} is then

$$\theta = \theta_k - \mathbf{H}_k^{-1} \mathbf{g}_k$$

ullet in the Newton's method one selects $\mathbf{d}_k = -\mathbf{H}_k^{-1}\mathbf{g}_k$

- in the Newton's method one selects $\mathbf{d}_k = -\mathbf{H}_k^{-1}\mathbf{g}_k$
- the step $\mathbf{d}_k = -\mathbf{H}_k^{-1}\mathbf{g}_k$ is what should be added to $\boldsymbol{\theta}_k$ to minimize the second order approximation of f around $\boldsymbol{\theta}_k$
- in its simplest form, Newton's method requires that H_k > 0 (the function is strictly convex)
- if not, the objective function is not convex, then \mathbf{H}_k may not be positive definite, so $\mathbf{d}_k = -\mathbf{H}_k^{-1}\mathbf{g}_k$ may not be a descent direction





Algorithm 8.1: Newton's method for minimizing a strictly convex function

```
1 Initialize \boldsymbol{\theta}_0;

2 for k=1,2,\ldots until convergence do

3 Evaluate \mathbf{g}_k = \nabla f(\boldsymbol{\theta}_k);

4 Evaluate \mathbf{H}_k = \nabla^2 f(\boldsymbol{\theta}_k);

5 Solve \mathbf{H}_k \mathbf{d}_k = -\mathbf{g}_k for \mathbf{d}_k;

6 Use line search to find stepsize \eta_k along \mathbf{d}_k;

7 \boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k + \eta_k \mathbf{d}_k;
```

- Intro
 - Logistic Regression
 - Decision Boundary
- Maximum Likelihood Estimation
 - Negative Log-Likelihood
- Optimization Algorithms
 - Gradient Descent
 - Newton's Method
 - Iteratively Reweighted Least Squares (IRLS)
- 4 Regularized Logistic Regression
 - Concept

Iteratively Reweighted Least Squares

- let us now apply Newton's algorithm to find the MLE for binary logistic regression
- the Newton update at iteration k+1 for this model is as follows (using $\eta_k=1$, since the Hessian is exact)

$$\mathbf{w}_{k+1} = \mathbf{w}_k - \mathbf{H}_k^{-1} \mathbf{g}_k$$

since

$$\mathbf{g}_k = \mathbf{X}^T (\boldsymbol{\mu}_k - \mathbf{y}), \ \mathbf{H}_k = \mathbf{X}^T \mathbf{S}_k \mathbf{X}$$

we have

$$\begin{aligned} \mathbf{w}_{k+1} &= \mathbf{w}_k + (\mathbf{X}^T \mathbf{S}_k \mathbf{X})^{-1} \mathbf{X}^T (\mathbf{y} - \boldsymbol{\mu}_k) = \\ &= (\mathbf{X}^T \mathbf{S}_k \mathbf{X})^{-1} [(\mathbf{X}^T \mathbf{S}_k \mathbf{X}) \mathbf{w}_k + \mathbf{X}^T (\mathbf{y} - \boldsymbol{\mu}_k)] = (\mathbf{X}^T \mathbf{S}_k \mathbf{X})^{-1} \mathbf{X}^T (\mathbf{S}_k \mathbf{X} \mathbf{w}_k + \mathbf{y} - \boldsymbol{\mu}_k) \end{aligned}$$

• then we have

$$\mathbf{w}_{k+1} = (\mathbf{X}^T \mathbf{S}_k \mathbf{X})^{-1} \mathbf{X}^T \mathbf{S}_k \mathbf{z}_k$$

where $\mathbf{z}_k \triangleq \mathbf{X}\mathbf{w}_k + \mathbf{S}_k^{-1}(\mathbf{y} - \boldsymbol{\mu}_k)$

Iteratively Reweighted Least Squares

the following equation

$$\mathbf{w}_{k+1} = (\mathbf{X}^T \mathbf{S}_k \mathbf{X})^{-1} \mathbf{X}^T \mathbf{S}_k \mathbf{z}_k$$

with $\mathbf{z}_k \triangleq \mathbf{X}\mathbf{w}_k + \mathbf{S}_k^{-1}(\mathbf{y} - \mu_k)$ is an example of **weighted least squares problem**, which is a minimizer of

$$J = \sum_{i=1}^N s_{ki} (z_{ki} - \mathbf{w}^\mathsf{T} \mathbf{x}_i)^2 = \|\mathbf{z}_k - \mathbf{X} \mathbf{w}_k\|_{\mathbf{S}_k^{-1}}$$

where $S_k = \text{diag}(s_{ki}), z_k = [z_{k1}, ..., z_{kN}]^T$

• since S_k is a diagonal matrix we can write the element-wise update

$$z_{ki} = \mathbf{w}_k^\mathsf{T} \mathbf{x}_i + \frac{y_i - \mu_{ki}}{\mu_{ki} (1 - \mu_{ki})}$$

where $\mu_k = [\mu_{k1}, ..., \mu_{kN}]^T$

this algorithm is called iteratively reweighted least squares (IRLS)

Iteratively Reweighted Least Squares

Algorithm 8.2: Iteratively reweighted least squares (IRLS)

```
 \begin{array}{ll} \mathbf{w} = \mathbf{0}_D; \\ \mathbf{2} \ w_0 = \log(\overline{y}/(1-\overline{y})); \\ \mathbf{3} \ \mathbf{repeat} \\ \mathbf{4} & | \ \eta_i = w_0 + \mathbf{w}^T \mathbf{x}_i; \\ \mathbf{5} & | \mu_i = \operatorname{sigm}(\eta_i); \\ \mathbf{6} & | s_i = \mu_i (1-\mu_i); \\ \mathbf{7} & | z_i = \eta_i + \frac{y_i - \mu_i}{s_i}; \\ \mathbf{8} & | \mathbf{S} = \operatorname{diag}(s_{1:N}); \\ \mathbf{9} & | \mathbf{w} = (\mathbf{X}^T \mathbf{S} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{S} \mathbf{z}; \\ \mathbf{10} \ \mathbf{until} \ \mathit{converged}; \\ \end{array}
```

- Intro
 - Logistic Regression
 - Decision Boundary
- Maximum Likelihood Estimation
 - Negative Log-Likelihood
- Optimization Algorithms
 - Gradient Descent
 - Newton's Method
 - Iteratively Reweighted Least Squares (IRLS)
- 4 Regularized Logistic Regression
 - Concept

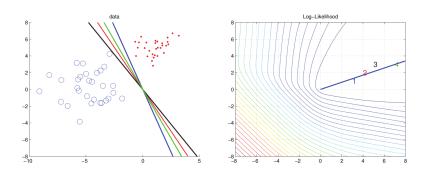
Regularized Logistic Regression



- consider the linearly separable 2D data in the above figure
- there are different decision boundaries that can perfectly separate the training data (4 examples are shown in different colors)
- the likelihood surface is shown: it is unbounded as we move up and to the right in parameter space, along a ridge where $w_2/w_1 = 2.35$ (the indicated diagonal line)

36 / 39

Regularized Logistic Regression



- we can maximize the likelihood by driving $\|\mathbf{w}\|$ to infinity (subject to being on this line), since large regression weights make the sigmoid function very steep, turning it into an infinitely steep sigmoid function $\mathbb{I}(\mathbf{w}^T\mathbf{x}>w_0)$
- consequently the **MLE** is not well defined when the data is linearly separable

Regularized Logistic Regression

- to prevent this, we can move to MAP estimation and hence add a regularization component in the classification setting (as we did in the ridge regression)
- to regularize the problem we can simply add spherical prior at the origin $p(\mathbf{w}) = \mathcal{N}(\mathbf{x}|0,\lambda\mathbf{I})$ and then maximize the posterior $p(\mathbf{w}|\mathcal{D}) \propto p(\mathcal{D}|\mathbf{w})p(\mathbf{w})$
- as a consequence a simple I₂ regularization can be easily obtained by using the following new objective, gradient and Hessian

$$f'(\mathbf{w}) = \mathsf{NLL}(\mathbf{w}) + \lambda \mathbf{w}^T \mathbf{w}$$
$$\mathbf{g}'(\mathbf{w}) = \mathbf{g}(\mathbf{w}) + 2\lambda \mathbf{w}$$
$$\mathbf{H}'(\mathbf{w}) = \mathbf{H}(\mathbf{w}) + 2\lambda \mathbf{I}$$

these modified equations can be used into any of the presented optimizers

Credits

Kevin Murphy's book